3.4.53 \(\int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx\) [353]

3.4.53.1 Optimal result
3.4.53.2 Mathematica [C] (verified)
3.4.53.3 Rubi [A] (verified)
3.4.53.4 Maple [C] (verified)
3.4.53.5 Fricas [F]
3.4.53.6 Sympy [F]
3.4.53.7 Maxima [F]
3.4.53.8 Giac [F]
3.4.53.9 Mupad [F(-1)]

3.4.53.1 Optimal result

Integrand size = 24, antiderivative size = 322 \[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\frac {x \sqrt {4+3 x^2+x^4}}{5 \left (2+x^2\right )}+\frac {1}{5} \sqrt {\frac {11}{35}} \arctan \left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {4+3 x^2+x^4}}\right )-\frac {\sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{5 \sqrt {4+3 x^2+x^4}}+\frac {9 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{25 \sqrt {2} \sqrt {4+3 x^2+x^4}}-\frac {11 \sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{75 \sqrt {4+3 x^2+x^4}}+\frac {187 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {9}{280},2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{525 \sqrt {2} \sqrt {4+3 x^2+x^4}} \]

output
1/175*arctan(2/35*x*385^(1/2)/(x^4+3*x^2+4)^(1/2))*385^(1/2)+1/5*x*(x^4+3* 
x^2+4)^(1/2)/(x^2+2)+1/30*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/c 
os(2*arctan(1/2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^( 
1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)+187/1050 
*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2) 
))*EllipticPi(sin(2*arctan(1/2*x*2^(1/2))),-9/280,1/4*2^(1/2))*((x^4+3*x^2 
+4)/(x^2+2)^2)^(1/2)*2^(1/2)/(x^4+3*x^2+4)^(1/2)-1/5*(x^2+2)*(cos(2*arctan 
(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*EllipticE(sin(2*arc 
tan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)/( 
x^4+3*x^2+4)^(1/2)
 
3.4.53.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 9.63 (sec) , antiderivative size = 283, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=-\frac {\sqrt {1-\frac {2 i x^2}{-3 i+\sqrt {7}}} \sqrt {1+\frac {2 i x^2}{3 i+\sqrt {7}}} \left (35 \left (3 i+\sqrt {7}\right ) E\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+\left (7 i-35 \sqrt {7}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+88 i \operatorname {EllipticPi}\left (\frac {5}{14} \left (3+i \sqrt {7}\right ),i \text {arcsinh}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right ),\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )\right )}{350 \sqrt {2} \sqrt {-\frac {i}{-3 i+\sqrt {7}}} \sqrt {4+3 x^2+x^4}} \]

input
Integrate[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2),x]
 
output
-1/350*(Sqrt[1 - ((2*I)*x^2)/(-3*I + Sqrt[7])]*Sqrt[1 + ((2*I)*x^2)/(3*I + 
 Sqrt[7])]*(35*(3*I + Sqrt[7])*EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqr 
t[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + (7*I - 35*Sqrt[7])*EllipticF 
[I*ArcSinh[Sqrt[(-2*I)/(-3*I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7 
])] + (88*I)*EllipticPi[(5*(3 + I*Sqrt[7]))/14, I*ArcSinh[Sqrt[(-2*I)/(-3* 
I + Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])]))/(Sqrt[2]*Sqrt[(-I)/(- 
3*I + Sqrt[7])]*Sqrt[4 + 3*x^2 + x^4])
 
3.4.53.3 Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 261, normalized size of antiderivative = 0.81, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {1523, 27, 1511, 27, 1416, 1509, 2220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x^4+3 x^2+4}}{5 x^2+7} \, dx\)

\(\Big \downarrow \) 1523

\(\displaystyle \frac {88}{15} \int \frac {x^2+2}{2 \left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx-\frac {2}{15} \int \frac {4-3 x^2}{2 \sqrt {x^4+3 x^2+4}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {44}{15} \int \frac {x^2+2}{\left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx-\frac {1}{15} \int \frac {4-3 x^2}{\sqrt {x^4+3 x^2+4}}dx\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {1}{15} \left (2 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-6 \int \frac {2-x^2}{2 \sqrt {x^4+3 x^2+4}}dx\right )+\frac {44}{15} \int \frac {x^2+2}{\left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{15} \left (2 \int \frac {1}{\sqrt {x^4+3 x^2+4}}dx-3 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx\right )+\frac {44}{15} \int \frac {x^2+2}{\left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{15} \left (\frac {\left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+4}}-3 \int \frac {2-x^2}{\sqrt {x^4+3 x^2+4}}dx\right )+\frac {44}{15} \int \frac {x^2+2}{\left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {44}{15} \int \frac {x^2+2}{\left (5 x^2+7\right ) \sqrt {x^4+3 x^2+4}}dx+\frac {1}{15} \left (\frac {\left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+4}}-3 \left (\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}}-\frac {x \sqrt {x^4+3 x^2+4}}{x^2+2}\right )\right )\)

\(\Big \downarrow \) 2220

\(\displaystyle \frac {44}{15} \left (\frac {3 \arctan \left (\frac {2 \sqrt {\frac {11}{35}} x}{\sqrt {x^4+3 x^2+4}}\right )}{4 \sqrt {385}}+\frac {17 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticPi}\left (-\frac {9}{280},2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{140 \sqrt {2} \sqrt {x^4+3 x^2+4}}\right )+\frac {1}{15} \left (\frac {\left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right ),\frac {1}{8}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+4}}-3 \left (\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \arctan \left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}}-\frac {x \sqrt {x^4+3 x^2+4}}{x^2+2}\right )\right )\)

input
Int[Sqrt[4 + 3*x^2 + x^4]/(7 + 5*x^2),x]
 
output
(-3*(-((x*Sqrt[4 + 3*x^2 + x^4])/(2 + x^2)) + (Sqrt[2]*(2 + x^2)*Sqrt[(4 + 
 3*x^2 + x^4)/(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/Sqrt[4 + 3 
*x^2 + x^4]) + ((2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticF[2* 
ArcTan[x/Sqrt[2]], 1/8])/(Sqrt[2]*Sqrt[4 + 3*x^2 + x^4]))/15 + (44*((3*Arc 
Tan[(2*Sqrt[11/35]*x)/Sqrt[4 + 3*x^2 + x^4]])/(4*Sqrt[385]) + (17*(2 + x^2 
)*Sqrt[(4 + 3*x^2 + x^4)/(2 + x^2)^2]*EllipticPi[-9/280, 2*ArcTan[x/Sqrt[2 
]], 1/8])/(140*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])))/15
 

3.4.53.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1523
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(c*d^2 - b*d*e + a*e^2)/(e*(e - d*q))   I 
nt[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] - Simp[1/(e*(e 
 - d*q))   Int[(c*d - b*e + a*e*q - (c*e - a*d*q^3)*x^2)/Sqrt[a + b*x^2 + c 
*x^4], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c 
*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2220
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(A 
rcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*e*Rt[ 
-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a 
+ b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4*d*e*q*Sqrt[a + b*x^2 + c*x^4]))*El 
lipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2 - b/(4*a*q^2)], x]] 
 /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] & 
& EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[-b + c*(d/e) + a*(e/d)]
 
3.4.53.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.51 (sec) , antiderivative size = 386, normalized size of antiderivative = 1.20

method result size
default \(\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{25 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {44 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, \Pi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{175 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}}\) \(386\)
elliptic \(\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{25 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, F\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {32 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, E\left (\frac {x \sqrt {-6+2 i \sqrt {7}}}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{5 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (3+i \sqrt {7}\right )}+\frac {44 \sqrt {1+\frac {3 x^{2}}{8}-\frac {i x^{2} \sqrt {7}}{8}}\, \sqrt {1+\frac {3 x^{2}}{8}+\frac {i x^{2} \sqrt {7}}{8}}\, \Pi \left (\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, x , -\frac {5}{7 \left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right )}, \frac {\sqrt {-\frac {3}{8}-\frac {i \sqrt {7}}{8}}}{\sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}}\right )}{175 \sqrt {-\frac {3}{8}+\frac {i \sqrt {7}}{8}}\, \sqrt {x^{4}+3 x^{2}+4}}\) \(386\)

input
int((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x,method=_RETURNVERBOSE)
 
output
32/25/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^ 
2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*x*(-6+2*I*7^( 
1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))-32/5/(-6+2*I*7^(1/2))^(1/2)*(1+3/8* 
x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^ 
2+4)^(1/2)/(3+I*7^(1/2))*EllipticF(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I 
*7^(1/2))^(1/2))+32/5/(-6+2*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2)) 
^(1/2)*(1+3/8*x^2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)/(3+I*7^(1/2 
))*EllipticE(1/4*x*(-6+2*I*7^(1/2))^(1/2),1/4*(2+6*I*7^(1/2))^(1/2))+44/17 
5/(-3/8+1/8*I*7^(1/2))^(1/2)*(1+3/8*x^2-1/8*I*x^2*7^(1/2))^(1/2)*(1+3/8*x^ 
2+1/8*I*x^2*7^(1/2))^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticPi((-3/8+1/8*I*7^(1 
/2))^(1/2)*x,-5/7/(-3/8+1/8*I*7^(1/2)),(-3/8-1/8*I*7^(1/2))^(1/2)/(-3/8+1/ 
8*I*7^(1/2))^(1/2))
 
3.4.53.5 Fricas [F]

\[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\int { \frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7} \,d x } \]

input
integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="fricas")
 
output
integral(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)
 
3.4.53.6 Sympy [F]

\[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\int \frac {\sqrt {\left (x^{2} - x + 2\right ) \left (x^{2} + x + 2\right )}}{5 x^{2} + 7}\, dx \]

input
integrate((x**4+3*x**2+4)**(1/2)/(5*x**2+7),x)
 
output
Integral(sqrt((x**2 - x + 2)*(x**2 + x + 2))/(5*x**2 + 7), x)
 
3.4.53.7 Maxima [F]

\[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\int { \frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7} \,d x } \]

input
integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="maxima")
 
output
integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)
 
3.4.53.8 Giac [F]

\[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\int { \frac {\sqrt {x^{4} + 3 \, x^{2} + 4}}{5 \, x^{2} + 7} \,d x } \]

input
integrate((x^4+3*x^2+4)^(1/2)/(5*x^2+7),x, algorithm="giac")
 
output
integrate(sqrt(x^4 + 3*x^2 + 4)/(5*x^2 + 7), x)
 
3.4.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {4+3 x^2+x^4}}{7+5 x^2} \, dx=\int \frac {\sqrt {x^4+3\,x^2+4}}{5\,x^2+7} \,d x \]

input
int((3*x^2 + x^4 + 4)^(1/2)/(5*x^2 + 7),x)
 
output
int((3*x^2 + x^4 + 4)^(1/2)/(5*x^2 + 7), x)